授课方式:全英文
时间:2025春夏学期
学分:4
成绩构成:作业10%,两次小测20%,期中20%,期末50%
Chapter 1:Logic and Proofs
1.1命题逻辑(Propositional Logic)
命题(proposition):一个陈述语句,或真或假
命题变量(Propositional variables):$p,q,r,s…$
真值(truth value):如果一个命题为真,则其真值为真$(T)$,否则真值为假$(F)$
逻辑运算符(Logical operators) (Connectives): 从已知命题形成复合命题(compound propositions)
一些逻辑运算符:
Negation operator $\lnot$ (NOT)
Conjunction operator $\land$ (AND)
Disjunction operator $\lor$ (OR)
Exclusive or operator $\oplus$ (XOR)
Conditional operator $\rightarrow$ (IF–THEN)
Biconditional operator $\leftrightarrow$ (IF AND ONLY IF)
补充:NOR 与 OR 相反,记作 $p \downarrow q$,仅在$p$和$q$均为$F$时为$T$。
$p\land q $称为命题$p$和$q$的合取(并且),$p\lor q $称为命题$p$和$q$的析取(或)
异或:$p\oplus q$真值表
条件语句:$p\rightarrow q$真值表
注意,只要if后是$F$,则$p\rightarrow q$是$T$
$p$被称为前提 (hypothesis) , $q$被称为结论 (conclusion)
Biconditional Operator:$p \leftrightarrow q$真值表
$p\rightarrow q$的逆命题(Converse)为$q\rightarrow p$
逆否命题(Contrapositive)为$\lnot q \rightarrow \lnot p$
反命题(Inverse)为$\lnot p \rightarrow \lnot q$
$p\rightarrow q$的几种常见表达方式
If p, then q
p implies q
If p, q
q if p
q when p
q follows from p
q whenever p
p is a sufficient condition for q
q is a necessary condition for p
p only if q
q unless ¬p
逻辑运算符优先级
1.2命题逻辑的应用
语句翻译:用命题变量表示语句中的每个成分,找出合适的逻辑联结词(运算符)。
1.3 命题等价式(Propositional Equivalences)
Classification of Compound Propositions
- Tautology : compound proposition that is always true
- Contradiction : compound proposition that is always false.
- Contingency: compound proposition that is neither a tautology nor a contradiction
The compound propositions $p$ and $q$ are called logically equivalent if $p \leftrightarrow q$ is a tautology,notation: $p \equiv q$ or $p \Leftrightarrow q$.
一些常见的逻辑等价式:
A compound proposition is satisfiable if there is an assignment of truth values to its variables that make it true. When no such assignments exist, the compound proposition is unsatisfiable.
A compound proposition is unsatisfiable if and only if its negation is a tautology.
1.5 嵌套量词(Nested Quantifiers)
Example $$\forall x\exist y F(x, y)$$
$$\forall \epsilon >0 \exist \ >0 \forall x ()$$
The Order of Quantifiers
$$\forall x \forall y P(x, y) \equiv \forall y \forall x P(x, y)$$